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A B S T R A C T

Speech Processing (SP) has developed dramatically in recent years,
being employed in a wide range of applications and adopting a va-
riety of schemes. The evolution of SP lead to many attempts to achieve
higher quality representation of voice files with the help of the
Sinusoidal Models (SMs). This thesis is an implementation of the
extended adaptive Quasi-Harmonic Model (eaQHM), a previously
researched SM that incorporates speech reconstruction utilizing time-
varying exponential functions and exploiting amplitude adaptation,
followed by frequency refining. Studies have demonstrated that the
eaQHM gives superior flexibility and efficiency in resynthesizing speech
than the other SMs. This model had already been implemented in
MATLAB, however the need for a more accessible and comprehensi-
ble approach was critical. The aim of this thesis is to implement the
eaQHM model in Python and then assess if the code gives satisfactory
results.

Index Terms— SP, Speech Reconstruction, SMs, eaQHM, Speech
Analysis, Speech Synthesis, Pitch estimation
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1
I N T R O D U C T I O N

1.1 speech processing

Indubitably, speech is a critical element of our daily life and it is one
of the fundamental human impulses and subsystem voices [1]. It is
critical to recognize that just in an average presentation, 100 to 150

words per minute are spoken while in a casual conversation, this in-
creases to 120 to 150 words per minute [2]. Everything from a walk
to the grocery store to a TED-ex talk requires us to utter words and
phrases that will help us understand each other and be heard. And
hence, with the development and prosperity of signal processing, the
need to digitally store, process, and transmit speech began to ad-
vance. For that purpose, digital processing on voice signals, or in
other words Speech Processing (SP), came into play [3].

Having a long history, SP has achieved widespread popularity in
recent years, especially amongst computer scientists, who were com-
pelled to devise techniques to process voice signals. SP algorithms
have been used in a variety of appliances and fields, involving pro-
cedures such as filtering, amplifying [4], decimation, interpolation
[5] and reconstruction. This thesis is primarily concerned with Sinu-
soidal Models (SMs), a SP technique that applies reconstruction to
provide a greater approximation of a speech signal [3, 6].

1.2 a brief historical background

Initial efforts involved speech recognition and processing, only con-
cerned with recognizing a few fundamental phonetic elements includ-
ing vowels. In 1952, a technique was created by Stephen Balashek,
R. Biddulph, and K. H. Davis, three Bell Labs researchers, which
was used to identify digits uttered by a single individual [7]. Four-
teen years later, Fumitada Itakura of Nagoya University and Shuzo
Saito of Nippon Telegraph and Telephone (NTT) were the first to pro-
pose Linear Predictive Coding (LPC), a SP method which was later
advanced by Bishnu S. Atal and Manfred R. Schroeder of Bell Labs
during the 1970s [8]. LPC has layed the foundations for Voice-over-
IP (VoIP) technology and speech synthesizer chips, like the Texas In-
struments LPC Speech Chips used in the 1978 Speak & Spell toys [9].
Then, in the early 1990s, speech recognition systems emerged, with
Dragon Dictate being the most commercially accessible and the AT&T
employed technology created by Lawrence Rabiner and colleagues at

1



2 introduction

Bell Labs in their Voice Recognition Call Processing service to redirect
calls without the use of a human operator [10].

1.3 applications of speech processing

SP finds itself useful in a lot of areas. This section will describe how
important the appliance of SP is in the fields of speech recognition by
Intelligent Virtual Assistants (IVAs) [11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29], medicine [1, 30, 31, 32, 33, 34] and
telecommunications [35, 36, 37, 38].

First and foremost, IVAs execute activities or provide services based
on voice orders or inquiries which can range from information about
weather forecast to playing music or videos, supplement and/or re-
placement of customer support by human beings, to-do list creations,
podcast streaming and information about the news [11, 12, 13, 14].
One very popular IVA is Apple’s Siri. Created by Dag Kittlaus, Tom
Gruber, and UCLA alumnus Adam Cheyer, Siri was initially used for
military purposes by Defense Advanced Research Projects Agency
(DARPA) for the project named "Cognitive Assistant that Learns and
Organizes (CALO)", and was aftewards bought by Apple Inc. with
the initial idea taken from a concept video called the Knowledge
Navigator, which debuted in 1987 [23, 24, 25, 26]. Amazon Alexa
is an equally famous IVA which evolved from a precursor with Pol-
ish origin known as Ivona, to be later purchased by Amazon and be
combined with Amazon Echo one year after [15, 16, 17]. And finally,
Google Assistant, which is powered by Artificial Intelligence (AI),
was officially published in July 2018, and to this day, it is enjoyed by
1 billion devices in total and over 500 million people a month [27, 28,
29].

Medicine also utilizes SP. Specifically in the field of
Electroencephalography (EEG), the Event Related Brain Potentials
(ERPs) were developed in light of the necessity of adaptation to speaker
identity and speech error identification in SP. As a result of research,
two ERP components N400 and P600 were invented with the purpose
of speech semantic and syntactic information processing [30]. It is
also astonishing how many distinct applications and techniques ex-
ist in the field of vocal pathology detection. First, Machine Learning
systems employ numerous different algorithms to identify any vocal
anomalies in a voice sample and distinguish the healthy from the
unhealthy sounds [31, 32]. Another technique is Automatic Speaker
Recognition (ASR), which finds speech disorders by integrating pat-
terns from patients who have the same diagnosis. It accomplishes this
by first extracting the Mel-Frequency Cepstral Coefficient (MFCC) pa-
rameters, i.e. the healthy sections of a speech recording, and then de-
termining whether or not the individual is healthy using the statisti-
cal pattern recognition classifiers Gaussian Mixture Model (GMM) and
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Support Vector Machine (SVM) [33]. Another approach suggests the
usage of Neural Networks (NNs) after obtaining the features of the
voice, and more specifically Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs) [1, 39]. And lastly, [34] pro-
poses a non-invasive and objective method by examining three unique
classifiers within the contexts of supervised learning and disorder de-
tection.

One must not exclude SP in telecommunications. Nobody can ar-
gue that speech is nothing more than a regular analog signal that
with the usage of an Analog-to-Digital Converter (ADC), someone
can obtain a digital form of it by sampling and quantization tech-
niques [35, 36]. Then right after that, the speech signal is ready to
be stored and as a result transmitted to the receiver. Telecommunica-
tions is a field which has emerged during 1897 and since then, people
all around the world have joyfully embraced new wireless commu-
nications technologies and services. Mainly utilizing digital signals,
telecommunications is continually changing and incorporating more
and more applications. In the mobile radio communications aspect,
improvements in digital and Radio Frequency (RF) circuit manufac-
turing, new large-scale circuit integration and various miniaturization
technologies that reduce the size, cost, and reliability of portable ra-
dio equipment, have emerged [37]. Other utilizations of digital signal
processing in telecommunications consist of digital transmission and
switching, transmission terminals with pulse-code modulation, trans-
mission terminals with frequency-division multiplex, signaling tones
detection, echo control, design considerations for hardware elements
and programmable digital signal processor operations [38].

1.4 techniques

Without a doubt, SP is an incredibly useful component in many do-
mains. But how does it work? How can someone process a speech au-
dio file? To this day, professionals have never shied away from utiliz-
ing SP schemes and, as a result developing new ones, beginning with
Hidden Markov Models (HMMs) [18, 19, 20, 21, 40, 41] and mainly fo-
cusing on NNs [1, 42, 43] as well as deep learning [39] with the start
of the new millennia. This section analyzes some of those schemes
and the areas they are involved.

Firstly, Dynamic Time Warping (DTW) is a well known approach
for determining the best alignment between two supplied (time de-
pendent) sequences under specified constraints and are warped in
a nonlinear way to match each other. DTW first employed in auto-
matic speech recognition to find differences between various speech
patterns in different speeds [44, 45]. Furthermore, a very popular tech-
nique is HMMs. Beginning in the mid-1970s, one of the initial uses of
HMMs was voice recognition prior to beginning to analyze biological
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sequences, namely DNA, and later entering the area of bioinformat-
ics [18, 19, 20, 21, 40, 41]. A more modern scheme are NNs in different
variations. Like Section 1.3 suggests, CNNs, which are based on levels
of hierarchy that consist of routing and grouping layers and RNNs,
with the intent of simulating temporal sequences and their long-term
connections, play a major role in fields like speech pathology detec-
tion [1, 39]. NNs are also utilized in the fields of speech synthesis in a
variety of styles and languages [42] and in an automated word recog-
nition system that helps orally adept but illiterate persons become
literate in the shortest amount of time feasible [43]. Additionally, as
mentioned in Section 1.3, the following different Machine Learning
classifiers are used for various speech applications, such as speech dis-
orders, speaker identification, emotion recognition from speech, and
others: (1) SVMs: Mostly used to divide data from distinct groups in
a linear way. SVMs work by finding the ideal boundary called hyper-
plane, which needs to be as divergent to both classes as feasible and
then divides them while increasing the gap to neighboring neatly sep-
arated instances [31, 32]. (2) K-Nearest Neighbour (KNN): To classify
data, KNN algorithm compares new data in relation to their distance.
It then sorts the data and selects the first k of them to make a deci-
sion [31]. (3) Decision Tree (DT): A tree data structure that distributes
all data in accordance with specific rules or questions. The latter are
represented as internal nodes, with data held as child nodes based
on particular answers to those questions [31, 32]. (4) Logistic Model
Tree (LMT): Similar to DTs but linear regression model is present in
the leaves, producing a piecewise linear regression model [31, 46].
(5) Naive Bayes: A classification which gathers all features that uti-
lize the current procedure and focuses its conditional probability on
the features in one class [32]. (6) Ensemble Methods: Multiple clas-
sifiers are used to improve accuracy by combining their predictions.
They may also aid in the enhancement of the precision of other clas-
sifiers [32]. And lastly, GMMs, a useful and necessary technique for
estimating probability distribution functions serve as the foundation
for many applications of SP, some of them being vocal mimicking
mechanisms and voice recognition systems [47, 48, 49, 50].

1.5 sinusoidal modelling

Section 1.3 provides a more broad overview of the applications in-
volving SP. However, the primary focus of this thesis is on Signal
Modelling, used in many applications involving speech in the past
twenty years, some of them being analysis, synthesis, enhancement
and modifications [3, 6, 51, 52, 53].

Many experts in signal processing have tried to provide high qual-
ity and flexible representations of a signal and speech resynthesizing,
utilizing various models. Those models are called SMs and they all
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vary in implementation and quality, but all share the same princi-
ple of splitting the signal in frames and representing it as a sum of
sinusoids. The most fundamental approach, being the adaptive Si-
nusoidal Model (aSM) exploits the model’s local adaptivity on the
examined signal. SMs have inspired many people in the field to im-
prove models that can capture speech more accurately, while keep-
ing flexibility and naturalness intact, only to be dominated by this
main concept: Decomposition of the signal into a Deterministic part,
where harmonically related sinusoids are used to describe the quasi-
periodic phenomena of speech, and a Stochastic part, which is actu-
ally the subtraction of the Deterministic part from the original time-
domain speech signal and employs modulated Gaussian noise to rep-
resent its non-periodic features, such as friction noise [6, 54]. This
concept paved the way for a more complex approach, called adaptive
Quasi-Harmonic Model (aQHM), which models the signal with time-
varying exponential basis functions and in the end a frequency correc-
tion mechanism takes place. This of course provides a higher quality
signal which is also quasi-harmonic. Then finally, the extended adap-
tive Quasi-Harmonic Model (eaQHM) expands the previous model by
adding amplitude adaptation, thus achieving improved reconstruc-
tion of the signal [3, 6].



2
I M P L E M E N TAT I O N O F T H E E A Q H M

2.1 the eaqhm model

eaQHM has many advantages compared to other aSMs. First of all, it
has been developed as a full-band model and thus there is no need for
a maximum voiced frequency in the analyzed speech. Secondly, as it
was previously stated, amplitude adaptation provides improved and
more accurate reconstruction of the signal. eaQHM works by initially
assuming an harmonic model and then iteratively reconstructing it
by applying an f0 estimation and frequency correction, until the re-
constructed speech signal converges in quasi-harmonicity.

It all starts by describing a full-band signal as an AM-FM decom-
position,

s(t) =

K∑
k=−K

Ak(t)e
jpk(t) (1)

where Ak(t) being the instantaneous amplitude and pk(t) the instan-
taneous phase of the kth component, given by

pk(t) = pk(ti) +

∫t
ti

2π

fs

(
fk(u) + c(u)

)
du (2)

with c(u) being the phase coherence term [3, 6].

2.1.1 0th Adaptation

With the help of an estimated f0 for each frame, a full-band harmonic-
ity is assumed so that the instantaneous amplitudes and slopes of the
frame are extracted using Least Squares. For this reason, a Blackman
analysis window w(t) centered in the current time instant (ti) is mul-
tiplied with the analysis frame

s(t) = w(t)

L∑
k=−L

ake
j2πkf0t (3)

where ak being the complex amplitude of the kth harmonic and L

is the number of harmonics spanning the whole spectrum up to the
Nyquist frequency. Because an initially harmonic model is assumed,
no f0 refinement is required. Finally, after a simple amplitude esti-
mation for each component is applied, the interpolated values of |ak|

and kf0 are used to reconstruct the signal srec(t) as

srec(t) =

L∑
k=−L

|ak(t)|e
jpkint(t) (4)

6



2.1 the eaqhm model 7

where

pkint(t) = ̸ ak(ti) +

∫t
ti

2π

fs
kf0(u) du (5)

[6].

2.1.2 1st Adaptation and After

After the 0th adaptation ends, the signal is adapted until it converges
to quasi-harmonicity and is modeled as

s(t) = w(t)

L∑
k=−L

(
ak + tbk

)∣∣∣ak(t+ ti)

ak(ti)

∣∣∣ejpkint(t) (6)

where pkint(t) as in Equation 5, ak,bk the complex amplitude and
the complex slope of the kth component. Then for each time instant,
the frequency correction mechanism

dfk =
fs

2π

ℜ{ak}ℑ{bk}− ℑ{ak}ℜ{bk}

|ak|2
(7)

is used, only to the components where

dfk ⩽
f0

a+ 1
(8)

with a being the adaptation number [6].

2.1.3 Interpolation

In this part, for each kth component, the instantaneous values are
interpolated according to the following process:

• The instantaneous amplitudes of |ak(t)| are linearly interpo-
lated

• The instantaneous frequencies fk(t) are interpolated in 3rd or-
der (spline) interpolation and

• The instantaneous phases pk(t) are interpolated by integration
of instantaneous frequency

After that the signal can be reconstructed as in Equation 1 with the
new instantaneous amplitudes and phases [6].

2.1.4 Signal-to-Reconstruction-Error Ratio (SRER)

At the end, the Signal-to-Reconstruction-Error Ratio (SRER) is com-
puted as

SRER = 20 log10

std(s(t))

std(s(t) − srec(t))
(9)
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where std is the Standard Deviation (STD) metric. The above proce-
dure is repeated until the SRER stops increasing, at which point it
terminates [6].

2.2 implementation

For the aforementioned model, there was already a program imple-
mented in MATLAB. The given code mainly consisted of functions
that perform analysis, synthesis, interpolation, producing structures
and some mathematical operations such as filtering and graph plot-
ting. The function of utmost significance was eaQHMAnalysis, which
applies extended adaptive Quasi-Harmonic Analysis to a speech sig-
nal, decomposing it into AM-FM components according to the eaQHM

and iteratively refining it until the reconstructed signal converges to
quasi-harmonicity. The main objective of this thesis is to convert this
algorithm into Python language, while keeping the best output in the
shortest feasible time. The code was successfully produced using vari-
ous functions from a lot of Python modules. Those are numpy, scipy,
pylab, time, statistics, copy, tqdm, warnings and matplotlib. More-
over, many functions were implemented that had to apply some sim-
ple operations MATLAB can do, like array transposition, array index-
ing and returning the final element of an array-like structure. Initially
the parameters of each signal were extracted from the respective .mat
files which included most of the signal’s information, as well as the
settings applied. After using a Python version of SWIPEP Pitch Esti-
mator [55] created by Disha Garg (available here) for the function, this
idea was rejected and all parameters are now created inside the func-
tion, while options are passed as input arguments. It is worth men-
tioning that not only a decomposition is returned but also a resynthe-
sis takes place in eaQHMAnalysis. Thus, the function was renamed
as eaQHMAnalysisAndSynthesis and the reconstructed signal was
added to the output variables. The final code is published here.

2.2.1 Why Python?

From a general perspective, the resulting code is readable and simple
to understand, assisting anybody to grasp the structure of the code,
even those who are not completely familiar with it. That is because
Python is well-known for being simple to read by being a high-level
programming language [56]. MATLAB is also an understandable lan-
guage but has the disadvantage that it is not free for everyone since it
is a commercial software and can only be used by those who own its
license. Moreover, additional toolboxes should be bought separately
to extend the functionality of the code. On the other hand, Python is
a free and open-source software, with its modules also being free [57].

https://www.w3schools.com/python/numpy/numpy_intro.asp
https://www.w3schools.com/python/scipy/scipy_intro.php
https://www.tutorialspoint.com/matplotlib/matplotlib_pylab_module.htm
https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/statistics.html
https://docs.python.org/3/library/copy.html
https://pypi.org/project/tqdm/
https://www.geeksforgeeks.org/warnings-in-python/
https://www.w3schools.com/python/matplotlib_intro.asp
https://github.com/dishagarg/SWIPE
https://github.com/Antibas/eaQHM-analysis-and-synthesis-in-Python
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As a result, this code can be executed by everyone, and no license is
required.

From an expert’s point of view, the community of SP and Machine
Learning is fairly intimate with Python and its basic modules. Peo-
ple specializing in the above fields are very pleased with the way
this language works due to its enhanced quality and profitability
through the usage of low-level libraries and high-level APIs that are
well-maintained. Especially within the last ten years, Python has wit-
nessed a remarkable rise in interest regarding the scientific computer
community [56]. Moreover, this language provides users with simple
mathematical operations other languages find difficult to do or re-
quire users to create functions from scratch to perform them. Thus,
for a complex and time consuming process such as the algorithm de-
scribed in Section 2.1, implementing functions for such operations
should be the least of the programmer’s concerns.

In conclusion, Python is an excellent choice for the purpose of SP,
as it is an easy language to both read and program and provides
programmers with a vast amount of modules. That is why it was
selected to implement the eaQHM model, allowing everyone to cope
with it and eventually provide new suggestions to enhance it.

2.2.2 eaQHMAnalysisAndSynthesis

This function applies eaQHM Analysis and Synthesis to a speech sig-
nal. As an output, the reconstructed signal along with its components,
the SRER per adaptation and the total time elapsed are produced. Due
to the usage of many functions and the time complexity of the al-
gorithm, this model is more time consuming than the other models,
but achieves a higher decomposition and resynthesis quality of the
speech signal.

Initially, the signal is preprocessed according to the options given.
At first, a high pass filter may be applied and thenceforth, a SWIPEP
pitch estimator makes the pitch estimations for the signal. The maxi-
mum frequency Fmax and partials Kmax are measured as

Fmax = int(fs/2-200)

if partials > 0:

Kmax = partials

else:

Kmax = int(round(Fmax/min(f0s[:,1])) + 10)

Listing 1: Maximum frequency and partials

where f0s contain the pitch estimation per frame and partials is a
variable given as an input which may define Kmax. After calculating
the voiced and unvoiced frames the preprocess ends.
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The signal is then split in time instants. Afterwards, it is iterated
up to a fixed number of adaptations (maxAdpt) for each time in-
stant within the analysis window and for each two consecutive voiced
frames, the following algorithm is initiated:

• In the first adaptation, a full-band harmonicity is assumed and
the frame is multiplied with a Blackman Window, thus obtain-
ing the complex amplitudes and slopes via the method of Least
Squares.

• After the first adaptation, the FM and AM components of the
frame are created, by initially extracting all non-zero frequency
values of the frame and the corresponding amplitudes, gener-
ating the components previously mentioned containing those
values in the appropriate positions, while the rest being zero.
Those components are not ready for use yet, as they contain
many zero frequency trajectories and amplitudes, so the pro-
cess must now solve these issues as follows:

1. A new frequency is "born" if there is at least one zero value
in the first position of the component and if so, it is re-
placed with the first non-zero one, for the kth frequency.

2. A frequency is "killed" if there is at least one zero value in
the last position of the component and if that is the case
then it is replaced with the last non-zero one, as done pre-
viously.

This can be observed more accurately in Listing 2

fm_zeros = argwhere(fm[:, k] == 0)

fm_nonzeros = argwhere(fm[:, k])

if len(fm_zeros) != 0:

fm_zeros_index = fm_zeros[0][0]

fm_nonzeros_index = fm_nonzeros[0][0]

if fm_zeros_index == 0:

fm[fm_zeros_index][k]= fm[fm_nonzeros_index][k]

am[fm_zeros_index][k] = am[fm_nonzeros_index][k]

fm_nonzeros = insert(fm_nonzeros, 0,

fm_zeros_index)

fm_zeros_index = end(fm_zeros)

fm_nonzeros_index = end(fm_nonzeros)

if fm_zeros_index == fm_len-1:

fm[fm_zeros_index][k] = fm[fm_nonzeros_index][k]

am[fm_zeros_index][k] = am[fm_nonzeros_index][k]

fm_nonzeros = append(fm_nonzeros, fm_zeros_index

)

Listing 2: The process of "killing" and/or "giving birth to" frequencies
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where fm is an array-like stucture containing all non-zero in-
stantaneous frequency trajectories. After that process, where
all zero frequency trajectories are either "killed" or "born", all
those components are linearly interpolated to be extended. This
whole procedure is repeated as many times as the number of
non-zero frequencies and following its termination, the frame
is once again multiplied with a Hamming Window with the
application of eaQHM, using the FM and AM components cre-
ated, and thus once again obtaining the complex amplitudes
and slopes. At the end, the correction mechanism is introduced
using the obtained items [6].

In both the first adaptation and the following ones, the values of
instantaneous amplitudes and phases for each frequency index are
estimated via the complex amplitudes and their phases respectively,
while the instantaneous frequencies are estimated according to List-
ing 3.

if a == 0:

fm_recon[tith-1][k] = (k+1)*f0

elif f0 > f0min:

fm_recon[tith-1][k] = fm_current[tith-1][k] + fmismatch[k]

else:

fm_recon[tith-1][k] = fm_current[tith-1][k]

Listing 3: Instantaneous frequency estimation

Here a is the adaptation number, tith is the current time instant, k
is the kth frequency, f0 is the current pitch estimation, f0min is the
f0 threshold and fmismatch is the correction mechanism. It can be
clearly observed that in the first adaptation, no correction mechanism
is used and each frequency is solely evaluated by the pitch estimation
of the current time instant. For the rest of the adaptations, the current
frequency is selectively fixed by the correction mechanism, depend-
ing on whether the estimated frequency exceeds the f0 threshold or
not.

Next, all instantaneous parameters created previously are interpo-
lated over the time instants for each sinusoid, only to the non-zero
values of AM components whose indices have time difference. These
interpolations are applied as explained in Subsection 2.1.3. As a final
step, frequency tracks are generated by unwrapped phases.

At this particular point, the reconstructed signal can be obtained
by taking the interpolated amplitude of the mean value of each win-
dow’s center and using the instantaneous amplitudes and phases to
generate a sum of sinusoids, which are then added together. Listing
4 shows this procedure
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s_recon_tmp = a0_recon + 2*multiply(am_recon, cos(ph_recon)).sum(

axis=1)

Listing 4: Signal Reconstruction

where a0_recon is an array-like containing the mean interpolated val-
ues and a0_recon, ph_recon are the instantaneous amplitudes and
phases respectively. Finally, the SRER of the current adaptation is cal-
culated. If a SRER is less than some threshold depending on the SRER

of the previous adaptation, this means the reconstruction of the signal
has adapted and no further adaptation is required. Thus, the iteration
terminates and the function returns the necessary output data.

Figures 1, 2 show the console produced with a female speaker
speech file as input and the graphs plotted respectively. Similarly for
Figures 3, 4 referring to a male speaker file.

2.2.3 Implementations’ Comparison

In contrast to the original code, the new implementation defaults us-
ing the eaQHM model in a full-band analysis while the aQHM model
is not supported. For the pitch estimations, only SWIPEP can be
used and neither the YIN nor the AIR pitch estimators are imple-
mented. Initially, SWIPEP’s pitch limits were exactly the same as in
[6]: [70, 220]Hz for male and [120, 350]Hz for female speakers. How-
ever, thorough examination revealed that those limits did not pro-
vide the optimal results and therefore had to be narrowed down into
[70, 180]Hz for males and [160, 300]Hz for females. Two additional do-
mains of [70, 500]Hz for other genders and [300, 600]Hz for children
were added as an option. Pitch limit can also be customized, although
it is not suggested. Finally, in this approach, no median smoothing
takes place after the pitch estimations, as it was found to severely
impair the reconstruction’s quality.

2.2.4 Known Issues

The resulting code is not without flaws. During the debugging pro-
cess, it was discovered that the SWIPEP pitch estimator did not gener-
ate estimates that were identical to those produced by MATLAB. Fur-
ther investigation indicated that the source of the problem was mat-
plotlib.pyplot.specgram, which provided a Fast Fourier Transform
(FFT) of the signal that was not as near as it should have been. This
causes a chain of divergences, resulting in inaccurate pitch estima-
tions. Additionally, the code’s execution time is something that needs
to be optimized, however this is less of a problem given Python’s
reputation for being incredibly slow. The next chapter will go into
further detail on whether the aforesaid concerns will be problematic.

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.specgram.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.specgram.html
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Figure 1: Output console of the code running a ’.wav’ file of a female speaker.
SRER and time elapsed per adaptation are printed.

Figure 2: Frequency and Time domains of the female speaker ’.wav’ file
(right) and its reconstruction (left).
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Figure 3: Output console of the code running a ’.wav’ file of a male speaker.
SRER and time elapsed per adaptation are printed.

Figure 4: Frequency and Time domains of the male speaker ’.wav’ file (right)
and its reconstruction (left).



3
E VA L U AT I O N

The translated code was put to a test in order for its accuracy and time
consumption to be determined and contrasted with the original. For
this purpose two kinds of examinations occurred: Objective Evaluation
and Subjective Evaluation. In Objective Evaluation, a database of speech
samples was used and several comparisons/metrics were computed
for both languages to examine the eaQHM model. In Subjective Evalu-
ation, all reconstructed database files generated from each code were
used for a listening test available online to analyze how the quality of
the refining can be captured by the average listener.

The database consists of 32 voice waveforms all sampled in fs =

16000Hz, with 16 male and 16 female speakers in various languages,
them being: Arabic, English, Finnish, French, German, Greek, Hindu, Ice-
landic, Italian, Japanese, Korean, Mandarin, Russian, Spanish, Basque and
Turkish.

In all files a full waveform analysis was performed with a 15-sample
step size and a window size with 3 pitch periods. The maximum num-
ber of adaptations allowed was 10. No high pass filter was used and
the number of partials was computed from the pitch estimations. The
settings of SWIPEP pitch estimator were the following: The pitch es-
timation window was 1ms and the pitch limits supported were as
mentioned in Subsection 2.2.3.

For the Python code, tests were executed in Spyder 4.1.4 IDE with
Python 3.8.3, whereas for the MATLAB code, MATLAB R2015a
(8.5.0.197613) was used. Both environments run in Windows 10 64-
bit OS on an ASUS FX504GE-DM231T Laptop with 16.0 GB installed
RAM and a Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz 2.20 GHz
processor.

3.1 objective evaluation

In objective analysis, each file from the speech database was exam-
ined through time/SRER measurements in both MATLAB and Python
codes. Initially, comparisons of the results each file produced are
taken. After that, average and divergence calculations of the results
were evaluated with Mean and Standard Deviation (STD) [58] metrics
respectively.

15

https://www.spyder-ide.org/
https://nl.mathworks.com/products/matlab.html
https://nl.mathworks.com/products/matlab.html
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3.1.1 SRER Evaluation

In this subsection, the outputs of both the new and the initial im-
plementations are examined to identify the quality of the files’ re-
constructions the Python code produces. A script was created in
each language to execute eaQHMAnalysisAndSynthesis in Python
and eaQHMAnalysis in MATLAB to all speech waveforms of the
database and store the results. All those results had their differences
measured as

Df(k) = SRERM(k) − SRERP(k) (10)

with Df(k), SRERM(k) and SRERP(k) being the difference, the SRER

calculation from MATLAB and from Python codes of the kth speech
file respectively. Then a threshold was selected to set a minimum
amount of dB to be accepted as a successful reconstruction or not.
For this evaluation, 5dB was chosen and all differences had to be
determined according to that limit. Hence, for the kth difference a
state label was included in the following way:

1. "Improvement" for Df(k) < 0

2. "Success" for 0 ⩽ Df(k) ⩽ 5 and

3. "Failure" for Df(k) ⩾ 5

By the end of this process the accuracy A of the algorithm was calcu-
lated using

A =
K− F

K
100% (11)

where K and F are the total number of files and "Failure" labels re-
spectively. After applying this evaluation, the results were a 75.8%
accuracy with 10 "Improvements", 15 "Successes" and 8 "Failures".

All those measurements can be seen in Table 1. The Table also in-
cludes the gender, language and state of each file and for every com-
parison, the max{SRERM,SRERP} is highlighted.
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Speech File Gender Language MATLAB SRER (dB) Python SRER (dB) Difference State

0071_spa_KJC0017_snd_norm_M Male Spanish 29.7960 33.1006 −3.30 Improvement

0072_spa_AGC0001_snd_norm_F Female Spanish 40.0348 40.4376 −0.40 Improvement

0081_eus_IBE0031_snd_norm_M Male Basque 37.7325 37.794 −0.06 Improvement

0082_eus_AGE0020_snd_norm_F Female Basque 38.7133 33.2453 5.47 Failure

0091_isl_m01-text1_snd_norm_M Male Icelandic 33.7482 35.4095 −1.66 Improvement

0092_isl_f01-text1_snd_norm_F Female Icelandic 36.4854 33.7814 2.70 Success

0101_ind_ut-ml-m4_snd_norm_M Male Hindu 33.1418 30.1426 3.00 Success

0102_ind_f06-063a_snd_norm_F Female Hindu 28.6593 29.3309 −0.67 Improvement

0111_tur_evenekm72_snd_norm_M Male Turkish 34.3413 29.1157 5.23 Failure

0112_tur_yasemin51_snd_norm_F Female Turkish 37.7703 35.8092 1.96 Success

0121_fin_mv_0606_snd_norm_M Male Finnish 37.6553 34.4583 3.20 Success

0122_fin_01l_rich_0247_snd_norm_F Female Finnish 37.0732 37.2261 −0.15 Improvement

0131_ara_ut-ml-m2_snd_norm_M Male Arabic 41.4782 29.2443 12.23 Failure

0132_ara_ut-ml-f1_snd_norm_F Female Arabic 34.4193 21.2076 13.21 Failure

0141_chi_ut-ml-m1_snd_norm_M Male Mandarin 25.8781 24.8115 1.07 Success

0142_chi_ut-ml-f3_snd_norm_F Female Mandarin 33.0566 23.4867 9.57 Failure

0151_kor_ut-ml-m1_snd_norm_M Male Korean 29.8495 29.9017 −0.05 Improvement

0152_kor_ut-ml-f3_snd_norm_F Female Korean 33.0125 24.306 8.71 Failure

0161_rus_ut-ml-m2_snd_norm_M Male Russian 34.5272 31.9083 2.62 Success

0162_rus_ut-ml-f2_snd_norm_F Female Russian 35.2661 28.4492 6.82 Failure

nitech_jp_atr503_m001_j31_snd_norm_M Male Japanese 39.0687 36.624 2.44 Success

af049orgh_snd_norm_F Female Japanese 37.5919 38.784 −1.19 Improvement

arctic_bdl1_snd_norm_M Male English 35.7918 31.6805 4.11 Success

arctic_slt1_snd_norm_F Female English 41.2167 40.1741 1.04 Success

XavierReference1_2_snd_norm_M Male French 38.3113 35.2703 3.04 Success

Christine_01_neutre_snd_norm_F Female French 39.1342 37.4503 1.68 Success

emodb_m_39_snd_norm_M Male German 33.4637 33.4073 0.06 Success

emodb_f_107_snd_norm_F Female German 34.2833 29.7604 4.52 Success

Kostas268_snd_norm_M Male Greek 36.4642 30.4209 6.04 Failure

Maria263_snd_norm_F Female Greek 31.9856 33.1773 −1.19 Improvement

Luciano_K_It_m_s_snd_norm_M Male Italian 32.9363 34.4697 −1.53 Improvement

Tiziana_C_It_f_s_snd_norm_F Female Italian 39.0700 36.5872 2.48 Success

Table 1: SRER values and comparisons (dB). The gender, language and state
of each file are included. The maximum SRER of each measurement
is marked in a yellow color.
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Additionally, a SRER per adaptation comparison took place. To eval-
uate the best, average and worst case scenarios of the algorithm, four
specific files were chosen:

1. The "Improvement" with the highest absolute difference
(Best-case scenario. Figure 5)

2. The "Success" with the lowest difference
(Average best-case scenario. Figure 6)

3. The "Success" with the highest difference
(Average worst-case scenario. Figure 7) and

4. The "Failure" with the highest difference
(Worst-case scenario. Figure 8)

Figure 5: SRER per Adaptation
of the best "Improve-
ment"

Figure 6: SRER per Adaptation
of the best "Success"

Figure 7: SRER per Adaptation
of the worst "Suc-
cess"

Figure 8: SRER per Adaptation
of the worst "Fail-
ure"

Figures 5-8 illustrate that the implemented algorithm may termi-
nate in a different adaptation from the original. It can also be as-
sumed that the starting SRER state does not affect the results at the
algorithm’s termination result.
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Table 2 shows the Mean and STD metrics for each code per gender.
The differences of each metric is also given.

Mean STD

Gender

Difference (dB)

Metric (dB)

Language
MATLAB Python MATLAB Python

Males 34.6 32.4 3.95 3.35

Difference 2.2 0.6

Females 36.1 32.7 3.37 6.04

Difference 3.4 −2.67

Table 2: Mean and STD for the SRERs of each code per gender. The compar-
isons are included.

It can clearly be observed that the Mean for both genders is lower
than the initial code, yet the differences are negligible regarding the
dB scale. So, merely by looking at the mean numbers, one can con-
clude that each code may achieve equivalent signal reconstructions.
The STD, on the other hand, is just smaller for males, meaning that
the values are clustered tightly around the mean value and thus the
STD is lowered [58]. For females though, the value is way greater and
exceeds the allowed threshold (5dB). This can be expected since 5 out
of 8 "Failures" come from female speakers and 3 of those have big Df.
In this case, the values of females are widely scattered around the
average value.

3.1.2 Time Evaluation

Additionally with the output measurements, the time duration each
file consumed were taken. For this purpose, time measurement mod-
ules (time for Python and tic toc for MATLAB) were utilized. A script
was created on each language to run the functions and calculate the
total time from the initialization to the termination. However, just
one measurement does not provide a full picture of how long each
file takes. Therefore, 10 time computations were taken and the mean
of them was extracted. Afterwards, similarly with Subsection 3.1.1,
the difference of each mean calculation was extracted as

Dt(k) = timeM(k) − timeP(k) (12)

with Dt(k), timeM(k) and timeP(k) being the difference, the mean
execution time from MATLAB and from Python codes of the kth

https://docs.python.org/3/library/time.html
https://nl.mathworks.com/help/matlab/ref/tic.html
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speech file respectively. Unlike 3.1.1, if Dt(k) ≪ 0, that means there
is no possibility of improving time for the kth file. Furthermore, be-
cause time optimization is not a major concern, neither state labels
nor percentage computation are needed.

All those measurements can be seen in Table 3, which also in-
cludes the gender and language of each file. For every comparison,
the min{timeM, timeP} is highlighted.



3.1 objective evaluation 21

Speech File Gender Language MATLAB Time (MM:SS) Python Time (MM:SS) Difference

0071_spa_KJC0017_snd_norm_M Male Spanish 05:03 05:00 00:03

0072_spa_AGC0001_snd_norm_F Female Spanish 02:15 04:48 -02:33

0081_eus_IBE0031_snd_norm_M Male Basque 06:06 04:59 01:07

0082_eus_AGE0020_snd_norm_F Female Basque 04:12 04:29 -00:17

0091_isl_m01-text1_snd_norm_M Male Icelandic 06:25 05:09 01:16

0092_isl_f01-text1_snd_norm_F Female Icelandic 01:42 03:55 -02:13

0101_ind_ut-ml-m4_snd_norm_M Male Hindu 03:02 04:16 -01:14

0102_ind_f06-063a_snd_norm_F Female Hindu 03:10 03:47 -00:37

0111_tur_evenekm72_snd_norm_M Male Turkish 05:39 04:16 01:23

0112_tur_yasemin51_snd_norm_F Female Turkish 02:41 03:47 -01:06

0121_fin_mv_0606_snd_norm_M Male Finnish 07:39 04:16 03:23

0122_fin_01l_rich_0247_snd_norm_F Female Finnish 01:51 03:46 -01:55

0131_ara_ut-ml-m2_snd_norm_M Male Arabic 05:50 04:14 01:36

0132_ara_ut-ml-f1_snd_norm_F Female Arabic 04:03 03:47 00:16

0141_chi_ut-ml-m1_snd_norm_M Male Mandarin 04:28 04:16 00:12

0142_chi_ut-ml-f3_snd_norm_F Female Mandarin 02:44 03:48 -01:04

0151_kor_ut-ml-m1_snd_norm_M Male Korean 06:54 04:19 02:35

0152_kor_ut-ml-f3_snd_norm_F Female Korean 04:55 03:46 01:09

0161_rus_ut-ml-m2_snd_norm_M Male Russian 06:21 04:29 01:52

0162_rus_ut-ml-f2_snd_norm_F Female Russian 02:53 03:57 -01:04

nitech_jp_atr503_m001_j31_snd_norm_M Male Japanese 03:28 04:38 -01:10

af049orgh_snd_norm_F Female Japanese 02:17 04:02 -01:45

arctic_bdl1_snd_norm_M Male English 05:04 04:34 00:30

arctic_slt1_snd_norm_F Female English 02:32 04:12 -01:40

XavierReference1_2_snd_norm_M Male French 04:50 04:23 00:27

Christine_01_neutre_snd_norm_F Female French 01:39 04:07 -02:28

emodb_m_39_snd_norm_M Male German 02:32 04:22 -01:50

emodb_f_107_snd_norm_F Female German 01:32 04:09 -02:37

Kostas268_snd_norm_M Male Greek 11:57 04:18 07:39

Maria263_snd_norm_F Female Greek 03:44 04:05 -00:21

Luciano_K_It_m_s_snd_norm_M Male Italian 04:15 04:19 -00:04

Tiziana_C_It_f_s_snd_norm_F Female Italian 02:13 04:07 -01:54

Table 3: Time values and comparisons. The gender and language of each file
are included. The minimum time of each measurement is marked
in a yellow color.
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With only a quick glance, one can say that most files do not achieve
a time improvement. However, the Mean and STD metrics shown in
Table 4 suggest slightly different results.

Mean STD

Gender

Metric (MM:SS)

Language MATLAB Python MATLAB Python

Males 05:35 04:29 02:11 00:18

Females 02:46 04:02 01:00 00:17

Table 4: Mean and STD for the execution time measurements of each code
per gender.

What the above Table indicates is that in MATLAB, the Mean for
males and females are far more deviant than in Python. It may also
be expected that MATLAB conducts the operation faster for female
speakers. This is because female speakers have a higher pitch range,
resulting in fewer harmonics and therefore faster processing. Python
does so too, but performs almost as well for both genders, hence it
is safe to assume that, irrespective of the speaker’s gender, the imple-
mented algorithm will conduct the procedure with more comparable
run-times opposing to the original which will fare incredibly quicker
on female speakers. What matters most though is the STD which is
significantly lower in Python than in MATLAB findings. This im-
plies that the implemented algorithm’s run-time does not depart sig-
nificantly from the average, but the execution time of the given code
might vary greatly. As an outcome, Python code is more stable in
terms of execution time, while MATLAB code will either be extraor-
dinarily fast or extremely sluggish.

3.1.3 Conclusions

To summarize, the above examinations show that the implementa-
tion may indeed provide successful output. However the SRER evalu-
ation results suggest that there is no guarantee for a better or even
a marginal reconstruction, and for female speakers there is a slightly
lower possibility for that. As far as the execution duration, it may
be satisfying at times but disappointing at others. What cannot be
debated though is that no matter the gender of the speaker, the ex-
ecution time shall be kept as consistent as practicable. This however
may vary based on the device’s specifications and CPU usage during
execution.
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3.2 subjective evaluation

In subjective analysis, each database file was reconstructed in both
Python and MATLAB implementations before being exported as ’.wav’
files. All 32 pairs were then uploaded in an online listening test which
was then shared to some candidates. Screenshots of the listening test
can be seen in Figure 9.

The goal of the test was for applicants to detect any differences
in each pair merely based on audio quality (noise, clicks, distortions,
amplitude etc.). It was suggested that they use a high-quality audio
device (headphones preferably, or else earbuds, monitor speakers or
worst-case laptop speakers) and conduct the assessment in a quiet
place. Candidates were instructed to listen to both files of each pair
and then select a label as: (1): "Same" if the files sounded identical or
(2): "Different" if any difference was detected.

The test was taken by 15 listeners in total, all of them speaking
Greek as their first language. At the end of the evaluation, the re-
sults were passed in a document file and the overall percentage of
"Same" labels for each pair was calculated. The criterion of > 60%
was used to determine if two files were identical or not. Given the
fairly small number of contenders and the fact that none of them
performed the assessment utilising speakers, the audio device used
will not be taken into account for this evaluation. It is also impor-
tant to mention that for the pair corresponding to file "0102_ind_f06-
063a_snd_norm_F.wav", 27% of listeners faced technical issues.

The results showed that 76% of the pairs were judged as identical,
with only 4 files being identified as different. All those measurements
can be seen in Table 5.

To complete the subjective examination, Tables 5 and 1 were con-
trasted, concentrating mostly on the 4 files labeled as "Different". It
was observed that half of those files were "Improvements", whereas
the other half were "Successes". Therefore, all "Failures" were labeled
as "Same", which means that differences in reconstruction quality (if
any) are difficult to detect and can thus be disregarded.

3.2.1 Conclusions

The listening test showed that despite how SRERs diverge, the out-
come files from both Python and MATLAB codes are similar overall,
and if any differences in amplitude or noise do exist, they are hardly
captured by the average listener. This lends credence to the thesis’
goal, implying that the algorithm generates results that are indeed
desirable, regardless the code’s success.
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Figure 9: The listening test website. The instructions of the test are shown.
The file pairs follow next.
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Speech File Gender Language "Same" Percentage Final Result

0071_spa_KJC0017_snd_norm_M Male Spanish 87% Same

0072_spa_AGC0001_snd_norm_F Female Spanish 100% Same

0081_eus_IBE0031_snd_norm_M Male Basque 80% Same

0082_eus_AGE0020_snd_norm_F Female Basque 80% Same

0091_isl_m01-text1_snd_norm_M Male Icelandic 73% Same

0092_isl_f01-text1_snd_norm_F Female Icelandic 67% Same

0101_ind_ut-ml-m4_snd_norm_M Male Hindu 80% Same

0102_ind_f06-063a_snd_norm_F Female Hindu 45% Different

0111_tur_evenekm72_snd_norm_M Male Turkish 87% Same

0112_tur_yasemin51_snd_norm_F Female Turkish 73% Same

0121_fin_mv_0606_snd_norm_M Male Finnish 60% Different

0122_fin_01l_rich_0247_snd_norm_F Female Finnish 93% Same

0131_ara_ut-ml-m2_snd_norm_M Male Arabic 73% Same

0132_ara_ut-ml-f1_snd_norm_F Female Arabic 80% Same

0141_chi_ut-ml-m1_snd_norm_M Male Mandarin 73% Same

0142_chi_ut-ml-f3_snd_norm_F Female Mandarin 80% Same

0151_kor_ut-ml-m1_snd_norm_M Male Korean 80% Same

0152_kor_ut-ml-f3_snd_norm_F Female Korean 73% Same

0161_rus_ut-ml-m2_snd_norm_M Male Russian 67% Same

0162_rus_ut-ml-f2_snd_norm_F Female Russian 67% Same

nitech_jp_atr503_m001_j31_snd_norm_M Male Japanese 87% Same

af049orgh_snd_norm_F Female Japanese 73% Same

arctic_bdl1_snd_norm_M Male English 67% Same

arctic_slt1_snd_norm_F Female English 60% Different

XavierReference1_2_snd_norm_M Male French 73% Same

Christine_01_neutre_snd_norm_F Female French 87% Same

emodb_m_39_snd_norm_M Male German 73% Same

emodb_f_107_snd_norm_F Female German 93% Same

Kostas268_snd_norm_M Male Greek 73% Same

Maria263_snd_norm_F Female Greek 60% Different

Luciano_K_It_m_s_snd_norm_M Male Italian 80% Same

Tiziana_C_It_f_s_snd_norm_F Female Italian 93% Same

Table 5: The results of the listening test. The gender and language of each
file are included.
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C O N C L U S I O N A N D F U T U R E W O R K

4.1 conclusion

This thesis emphasized on the significance of SP in many facets of
our life before proceeding into the SMs and their various implementa-
tions. Then after focusing on the primary subject, namely the eaQHM,
an implementation of it is analyzed and contrasted with a comparable
previously completed one. The initial code is developed in MATLAB,
while the produced one in Python. Evaluation showed that there are
several results that are not as intended and this needs to be refined.
Even such differences, however, are not perceptible to the ordinary
listener and cannot be noticed with a single hearing. Overall, the gen-
erated code yields marginal or better reconstructions in a perhaps
slow but most consistent execution time compared to the original.

4.2 future work

Certainly, there are still improvements that can be made. Even though
there are techniques to make Python programs run quicker [59], time
optimization is not of grave interest, since Python is already a very
sluggish programming language by nature. What is needed though is
the reconstruction optimization and the increment of the code’s accu-
racy. The first idea is to correct the problem with specgram mentioned
in Section 2.2.4, most likely by substituting equivalent functions, de-
spite the fact that an attempt has previously been made. Another sug-
gestion is to introduce the pitch estimator YIN. As [6] states, SRERs

generated with YIN differs little from SRERs produced with SWIPEP.
Thus, its implementation may resolve the pitch estimation problem.
And finally, replacing SWIPEP with another version of SWIPE such
as pysptk.sptk.swipe or any other stable pitch estimator might be an-
other option for this issue.

Although all the above ideas sound easy on paper due to the elim-
ination of failed reconstructions, applying any of them would nullify
the improvements too. Nonetheless, if more testing reveals that the
accuracy decreases, those options will be considered.
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